منابع مشابه
Constructing an Infinite Family of Cubic 1-Regular Graphs
A graph is 1-regular if its automorphism group acts regularly on the set of its arcs. Miller [J. Comb. Theory, B, 10 (1971), 163–182] constructed an infinite family of cubic 1-regular graphs of order 2p, where p ≥ 13 is a prime congruent to 1 modulo 3. Marušič and Xu [J. Graph Theory, 25 (1997), 133– 138] found a relation between cubic 1-regular graphs and tetravalent half-transitive graphs wit...
متن کاملan infinite planar array of rectangular microstrip patch antenna analysis
the methods which are used to analyze microstrip antennas, are divited into three categories: empirical methods, semi-empirical methods and full-wave analysis. empirical and semi-empirical methods are generally based on some fundamental simplifying assumptions about quality of surface current distribution and substrate thickness. thses simplificatioms cause low accuracy in field evaluation. ful...
15 صفحه اولOPTIMAL ANALYSIS OF NON-REGULAR GRAPHS USING THE RESULTS OF REGULAR MODELS VIA AN ITERATIVE METHOD
In this paper an efficient method is developed for the analysis of non-regular graphs which contain regular submodels. A model is called regular if it can be expressed as the product of two or three subgraphs. Efficient decomposition methods are available in the literature for the analysis of some classes of regular models. In the present method, for a non-regular model, first the nodes of the ...
متن کاملOPTIMAL ANALYSIS OF NON-REGULAR GRAPHS USING THE RESULTS OF REGULAR MODELS VIA AN ITERATIVE METHOD
In this paper an efficient method is developed for the analysis of non-regular graphs which contain regular submodels. A model is called regular if it can be expressed as the product of two or three subgraphs. Efficient decomposition methods are available in the literature for the analysis of some classes of regular models. In the present method, for a non-regular model, first the nodes of th...
متن کاملRegular dissections of an infinite strip
In the early 1970s, Bro. U. Alfred Brousseau asked for the number of regions formed in an infinite strip by the mn segments that join m equally spaced points on one edge to n equally spaced points on the other. Using projective duality, we express the number of points, segments, and regions formed by Brousseau's configuration in terms of the numbers Lk(m, n) of lines that meet an m x n lattice ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 1988
ISSN: 0012-365X
DOI: 10.1016/0012-365x(88)90140-9